## FAIRCHILD

SEMICONDUCTOR

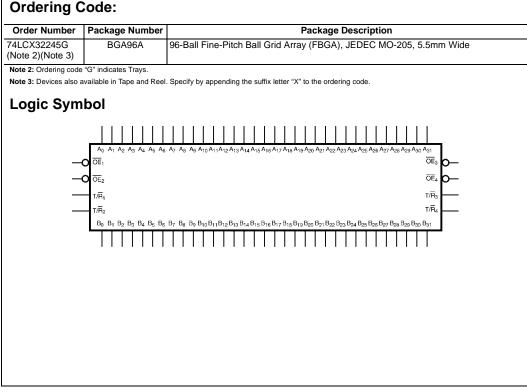
# 74LCX32245 Low Voltage 32-Bit Bidirectional Transceiver with 5V Tolerant Inputs and Outputs

#### **General Description**

The LCX32245 contains thirty-two non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is designed for low voltage (2.5V or 3.3V)  $V_{CC}$  applications with capability of interfacing to a 5V signal environment. The device is byte controlled. Each byte has separate control inputs which could be shorted together for full 32-bit operation. The  $T/\overline{R}$  inputs determine the direction of data flow through the device. The  $\overline{OE}$  inputs disable both the A and B ports by placing them in a high impedance state.

The LCX32245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

#### Features


- 5V tolerant inputs and outputs
- 2.3V–3.6V V<sub>CC</sub> specifications provided
- 4.5 ns t<sub>PD</sub> max (V<sub>CC</sub> = 3.3V), 20 µA I<sub>CC</sub> max
- Power down high impedance inputs and outputs

November 2001

Revised June 2002

- Supports live insertion/withdrawal (Note 1)
- $\pm$ 24 mA output drive (V<sub>CC</sub> = 3.0V)
- Uses patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:
  - Human body model > 2000V Machine model > 200V
- Packaged in plastic Fine-Pitch Ball Grid Array (FBGA)

Note 1: To ensure the high-impedance state during power up or down,  $\overline{\text{OE}}$  should be tied to V<sub>CC</sub> through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.



# 74LCX32245

| Connection | Diagram |
|------------|---------|
|            | 123456  |
| ۲          | 000000  |
| в          | 000000  |
| O          | 000000  |
| Ω          | 000000  |
| ш          | 000000  |
| ш          | 000000  |
| ហ          | 000000  |
| т          | 000000  |
| J          | 000000  |
| ¥          | 000000  |
| L          | 000000  |
| Σ          | 000000  |
| z          | 000000  |
| ₽.         | 000000  |
| щ          | 000000  |
| н          | 000000  |
| 1          | •       |

(Top Thru View)

## **Pin Descriptions**

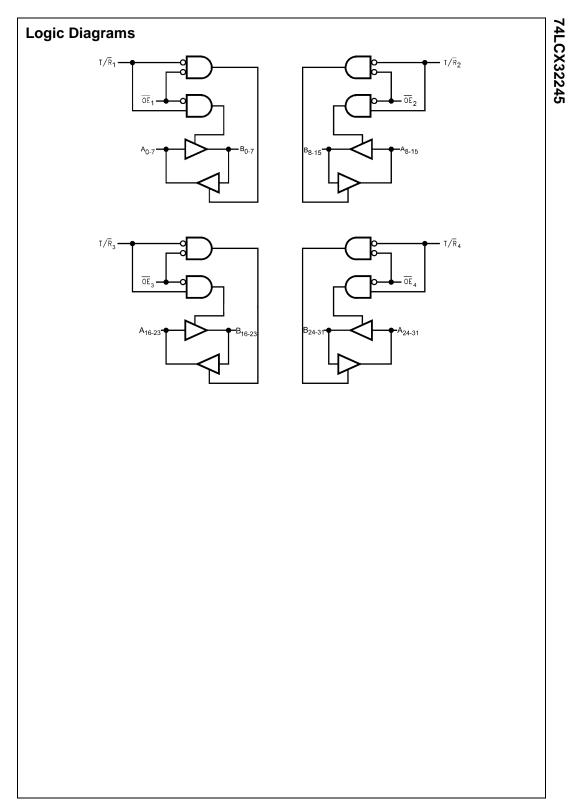
| Pin Names                                                        | Description                      |  |  |  |
|------------------------------------------------------------------|----------------------------------|--|--|--|
| OEn                                                              | Output Enable Input (Active LOW) |  |  |  |
| T/R <sub>n</sub> Transmit/Receive Input                          |                                  |  |  |  |
| A <sub>0</sub> -A <sub>31</sub>                                  | Side A Inputs or 3-STATE Outputs |  |  |  |
| B <sub>0</sub> -B <sub>31</sub> Side B Inputs or 3-STATE Outputs |                                  |  |  |  |

## **FBGA Pin Assignments**

|   | 1               | 2               | 3                  | 4                 | 5               | 6               |
|---|-----------------|-----------------|--------------------|-------------------|-----------------|-----------------|
| Α | B <sub>1</sub>  | B <sub>0</sub>  | T/R <sub>1</sub>   | OE <sub>1</sub>   | A <sub>0</sub>  | A <sub>1</sub>  |
| В | B <sub>3</sub>  | B <sub>2</sub>  | GND                | GND               | A <sub>2</sub>  | A <sub>3</sub>  |
| С | В <sub>5</sub>  | B <sub>4</sub>  | V <sub>CC</sub>    | V <sub>CC</sub>   | A <sub>4</sub>  | Α <sub>5</sub>  |
| D | В <sub>7</sub>  | B <sub>6</sub>  | GND                | GND               | A <sub>6</sub>  | A <sub>7</sub>  |
| Е | B <sub>9</sub>  | B <sub>8</sub>  | GND                | GND               | A <sub>8</sub>  | A <sub>9</sub>  |
| F | B <sub>11</sub> | B <sub>10</sub> | V <sub>CC</sub>    | V <sub>CC</sub>   | A <sub>10</sub> | A <sub>11</sub> |
| G | B <sub>13</sub> | B <sub>12</sub> | GND                | GND               | A <sub>12</sub> | A <sub>13</sub> |
| н | B <sub>14</sub> | B <sub>15</sub> | $T/\overline{R}_2$ | OE <sub>2</sub>   | A <sub>15</sub> | A <sub>14</sub> |
| J | B <sub>17</sub> | B <sub>16</sub> | $T/R_3$            | OE <sub>3</sub>   | A <sub>16</sub> | A <sub>17</sub> |
| Κ | B <sub>19</sub> | B <sub>18</sub> | GND                | GND               | A <sub>18</sub> | A <sub>19</sub> |
| L | B <sub>21</sub> | B <sub>20</sub> | V <sub>CC</sub>    | V <sub>CC</sub>   | A <sub>20</sub> | A <sub>21</sub> |
| М | B <sub>23</sub> | B <sub>22</sub> | GND                | GND               | A <sub>22</sub> | A <sub>23</sub> |
| Ν | B <sub>25</sub> | B <sub>24</sub> | GND                | GND               | A <sub>24</sub> | A <sub>25</sub> |
| Р | B <sub>27</sub> | B <sub>26</sub> | V <sub>CC</sub>    | V <sub>CC</sub>   | A <sub>26</sub> | A <sub>27</sub> |
| R | B <sub>29</sub> | B <sub>28</sub> | GND                | GND               | A <sub>28</sub> | A <sub>29</sub> |
| т | B <sub>30</sub> | В <sub>31</sub> | T/R <sub>4</sub>   | $\overline{OE}_4$ | A <sub>31</sub> | A <sub>30</sub> |

#### **Truth Tables**

| In              | puts             | Outpute                                                                         |  |  |  |
|-----------------|------------------|---------------------------------------------------------------------------------|--|--|--|
| OE <sub>1</sub> | T/R <sub>1</sub> | Outputs                                                                         |  |  |  |
| L               | L                | Bus $B_0-B_7$ Data to Bus $A_0-A_7$                                             |  |  |  |
| L               | н                | Bus $B_0-B_7$ Data to Bus $A_0-A_7$<br>Bus $A_0-A_7$ Data to Bus $B_0-B_7$      |  |  |  |
| Н               | Х                | HIGH Z State on A <sub>0</sub> -A <sub>7</sub> , B <sub>0</sub> -B <sub>7</sub> |  |  |  |


| In              | puts             | Outpute                                                                                |
|-----------------|------------------|----------------------------------------------------------------------------------------|
| OE <sub>2</sub> | T/R <sub>2</sub> | Outputs                                                                                |
| L               | L                | Bus $B_8-B_{15}$ Data to Bus $A_8-A_{15}$<br>Bus $A_8-A_{15}$ Data to Bus $B_8-B_{15}$ |
| L               | Н                | Bus A <sub>8</sub> -A <sub>15</sub> Data to Bus B <sub>8</sub> -B <sub>15</sub>        |
| Н               | Х                | HIGH Z State on A8-A15, B8-B15                                                         |

| Inp             | uts     | Outputs                                                                                            |  |  |  |  |
|-----------------|---------|----------------------------------------------------------------------------------------------------|--|--|--|--|
| OE <sub>3</sub> | $T/R_3$ | Outputs                                                                                            |  |  |  |  |
| L               | L       | Bus B <sub>16</sub> –B <sub>23</sub> Data to Bus A <sub>16</sub> –A <sub>23</sub>                  |  |  |  |  |
| L               | н       | Bus $B_{16}-B_{23}$ Data to Bus $A_{16}-A_{23}$<br>Bus $A_{16}-A_{23}$ Data to Bus $B_{16}-B_{23}$ |  |  |  |  |
| Н               | Х       | HIGH Z State on A <sub>16</sub> -A <sub>23</sub> , B <sub>16</sub> -B <sub>23</sub>                |  |  |  |  |

| Inp             | outs             | Outrasta                                                                            |
|-----------------|------------------|-------------------------------------------------------------------------------------|
| OE <sub>4</sub> | T/R <sub>4</sub> | Outputs                                                                             |
| L               | L                | Bus B <sub>24</sub> –B <sub>31</sub> Data to Bus A <sub>24</sub> –A <sub>31</sub>   |
| L               | Н                | Bus $A_{24}$ - $A_{31}$ Data to Bus $B_{24}$ - $B_{31}$                             |
| н               | Х                | HIGH Z State on A <sub>24</sub> -A <sub>31</sub> , B <sub>24</sub> -B <sub>31</sub> |

X = Immaterial (HIGH or LOW, inputs and I/O's may not float) Z = High Impedance

H = HIGH Voltage Level L = LOW Voltage Level



74LCX32245

#### Absolute Maximum Ratings(Note 4)

|                  | 5                                | ,                        |                                      |       |
|------------------|----------------------------------|--------------------------|--------------------------------------|-------|
| Symbol           | Parameter                        | Value                    | Conditions                           | Units |
| V <sub>CC</sub>  | Supply Voltage                   | -0.5 to +7.0             |                                      | V     |
| VI               | DC Input Voltage                 | -0.5 to +7.0             |                                      | V     |
| Vo               | DC Output Voltage                | -0.5 to +7.0             | Output in 3-STATE                    | V     |
|                  |                                  | $-0.5$ to $V_{CC} + 0.5$ | Output in HIGH or LOW State (Note 5) | v     |
| I <sub>IK</sub>  | DC Input Diode Current           | -50                      | V <sub>I</sub> < GND                 | mA    |
| I <sub>OK</sub>  | DC Output Diode Current          | -50                      | V <sub>O</sub> < GND                 | mA    |
|                  |                                  | +50                      | $V_{O} > V_{CC}$                     | IIIA  |
| lo               | DC Output Source/Sink Current    | ±50                      |                                      | mA    |
| I <sub>CC</sub>  | DC Supply Current per Supply Pin | ±100                     |                                      | mA    |
| I <sub>GND</sub> | DC Ground Current per Ground Pin | ±100                     |                                      | mA    |
| T <sub>STG</sub> | Storage Temperature              | -65 to +150              |                                      | °C    |

## Recommended Operating Conditions (Note 6)

| Symbol                           | Parameter                                                            |                                                  | Min | Max             | Units |
|----------------------------------|----------------------------------------------------------------------|--------------------------------------------------|-----|-----------------|-------|
| V <sub>CC</sub>                  | Supply Voltage                                                       | Operating                                        | 2.0 | 3.6             | V     |
|                                  |                                                                      | Data Retention                                   | 1.5 | 3.6             | v     |
| VI                               | Input Voltage                                                        |                                                  | 0   | 5.5             | V     |
| Vo                               | Output Voltage                                                       | HIGH or LOW State                                | 0   | V <sub>CC</sub> | V     |
|                                  |                                                                      | 3-STATE                                          | 0   | 5.5             | v     |
| I <sub>OH</sub> /I <sub>OL</sub> | Output Current                                                       | $V_{CC} = 3.0V - 3.6V$                           |     | ±24             |       |
|                                  |                                                                      | $V_{CC} = 2.7V - 3.0V$<br>$V_{CC} = 2.3V - 2.7V$ |     | ±12             | mA    |
|                                  |                                                                      | $V_{CC}=2.3V-2.7V$                               |     | ±8              |       |
| T <sub>A</sub>                   | Free-Air Operating Temperature                                       |                                                  | -40 | 85              | °C    |
| $\Delta t / \Delta V$            | Input Edge Rate, V <sub>IN</sub> = 0.8V–2.0V, V <sub>CC</sub> = 3.0V |                                                  | 0   | 10              | ns/V  |

Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 5: I<sub>O</sub> Absolute Maximum Rating must be observed.

Note 6: Unused inputs or I/O's must be held HIGH or LOW. They may not float.

#### **DC Electrical Characteristics**

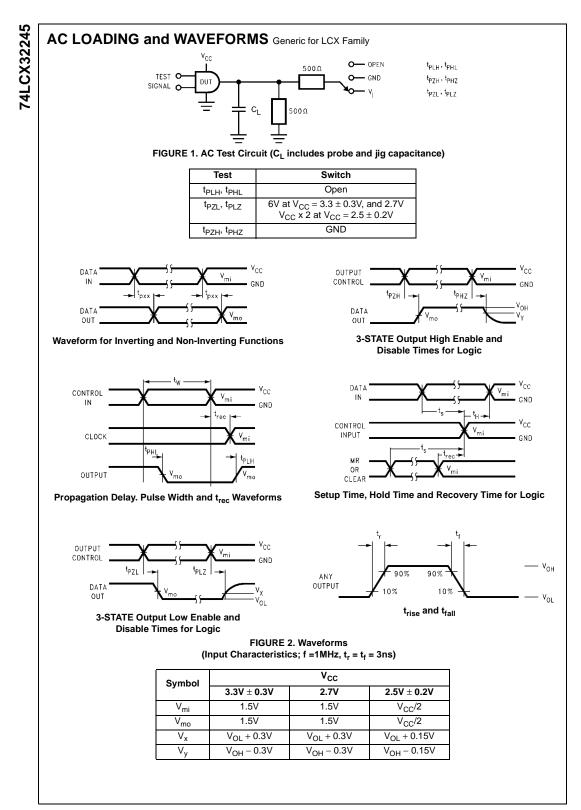
| Symbol          | Parameter                 | Conditions                        | V <sub>CC</sub> | $T_A = -40^{\circ}C$ to $+85^{\circ}C$ |      | Units |
|-----------------|---------------------------|-----------------------------------|-----------------|----------------------------------------|------|-------|
| Symbol          |                           | Conditions                        | (V)             | Min Max                                |      |       |
| V <sub>IH</sub> | HIGH Level Input Voltage  |                                   | 2.3 – 2.7       | 1.7                                    |      | V     |
|                 |                           |                                   | 2.7 - 3.6       | 2.0                                    |      | v     |
| V <sub>IL</sub> | LOW Level Input Voltage   |                                   | 2.3 – 2.7       |                                        | 0.7  | V     |
|                 |                           |                                   | 2.7 - 3.6       |                                        | 0.8  | v     |
| √ <sub>ОН</sub> | HIGH Level Output Voltage | I <sub>OH</sub> = -100 μA         | 2.3 - 3.6       | V <sub>CC</sub> - 0.2                  |      |       |
|                 |                           | I <sub>OH</sub> = -8 mA           | 2.3             | 1.8                                    |      |       |
|                 |                           | $I_{OH} = -12 \text{ mA}$         | 2.7             | 2.2                                    |      | V     |
|                 |                           | I <sub>OH</sub> = -18 mA          | 3.0             | 2.4                                    |      |       |
|                 |                           | $I_{OH} = -24 \text{ mA}$         | 3.0             | 2.2                                    |      |       |
| V <sub>OL</sub> | LOW Level Output Voltage  | I <sub>OL</sub> = 100 μA          | 2.3 - 3.6       |                                        | 0.2  |       |
|                 |                           | $I_{OL} = 8mA$                    | 2.3             |                                        | 0.6  |       |
|                 |                           | $I_{OL} = 12 \text{ mA}$          | 2.7             |                                        | 0.4  | V     |
|                 |                           | I <sub>OL</sub> = 16 mA           | 3.0             |                                        | 0.4  |       |
|                 |                           | I <sub>OL</sub> = 24 mA           | 3.0             |                                        | 0.55 |       |
| h               | Input Leakage Current     | $0 \le V_I \le 5.5V$              | 2.3 - 3.6       |                                        | ±5.0 | μΑ    |
| oz              | 3-STATE I/O Leakage       | $0 \le V_O \le 5.5V$              | 2.3 - 3.6       |                                        | ±5.0 |       |
|                 |                           | $V_I = V_{IH} \text{ or } V_{IL}$ |                 |                                        |      | μA    |
| OFF             | Power-Off Leakage Current | $V_1 \text{ or } V_0 = 5.5 V$     | 0               |                                        | 10   | μA    |

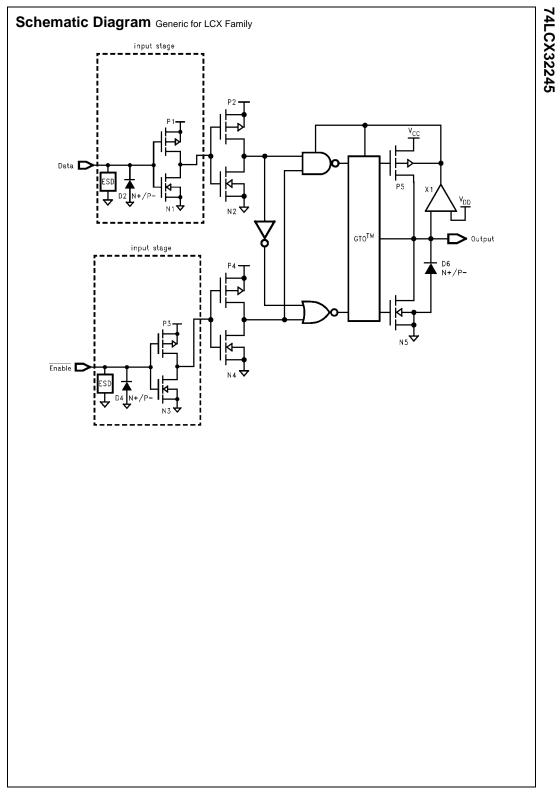
## DC Electrical Characteristics (Continued)

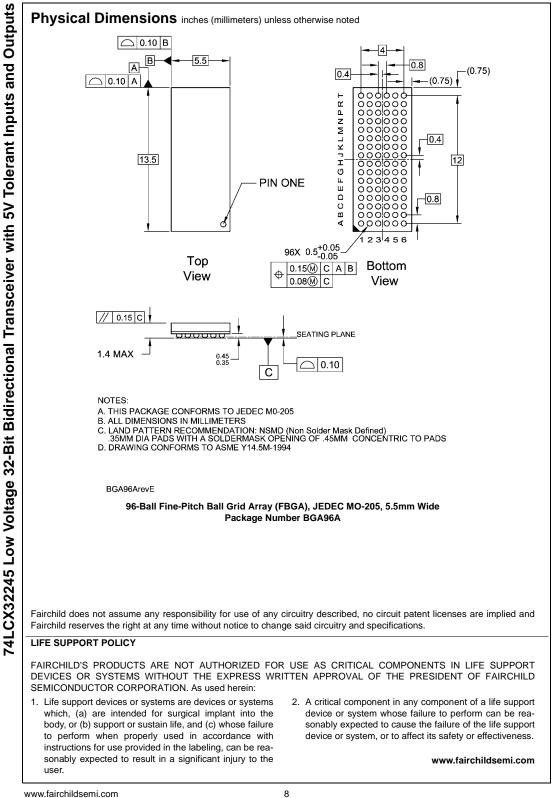
| Symbol Parameter | Parameter Conditions                  |                                       | $T_A = -40^{\circ}$ | Units |     |       |
|------------------|---------------------------------------|---------------------------------------|---------------------|-------|-----|-------|
|                  | ranneter                              | Conditions                            | (V)                 | Min   | Max | Units |
| I <sub>CC</sub>  | Quiescent Supply Current              | $V_I = V_{CC}$ or GND                 | 2.3–3.6             |       | 20  | μA    |
|                  |                                       | $3.6V \le V_I, V_O \le 5.5V$ (Note 7) | 2.3–3.6             |       | ±20 | μΑ    |
| ΔI <sub>CC</sub> | Increase in I <sub>CC</sub> per Input | $V_{IH} = V_{CC} - 0.6V$              | 2.3-3.6             |       | 500 | μA    |

Note 7: Outputs disabled or 3-STATE only.

## **AC Electrical Characteristics**


|                  |                                                                      | $T_A = -40^{\circ}C$ to $+85^{\circ}C$ , $R_L = 500\Omega$ |     |                       |                 |                        |                      |       |
|------------------|----------------------------------------------------------------------|------------------------------------------------------------|-----|-----------------------|-----------------|------------------------|----------------------|-------|
| Symbol           | Parameter                                                            | $V_{CC} = 3.3V \pm 0.3V$ $C_L = 50 \text{ pF}$             |     | V <sub>CC</sub> =     | $V_{CC} = 2.7V$ |                        | $V_{CC}=2.5V\pm0.2V$ |       |
|                  | Faranieter                                                           |                                                            |     | $C_L = 50 \text{ pF}$ |                 | C <sub>L</sub> = 30 pF |                      | Units |
|                  |                                                                      | Min                                                        | Max | Min                   | Max             | Min                    | Max                  |       |
| t <sub>PHL</sub> | Propagation Delay                                                    | 1.5                                                        | 4.5 | 1.5                   | 5.2             | 1.5                    | 5.4                  | ns    |
| t <sub>PLH</sub> | A <sub>n</sub> to B <sub>n</sub> or B <sub>n</sub> to A <sub>n</sub> | 1.5                                                        | 4.5 | 1.5                   | 5.2             | 1.5                    | 5.4                  | 115   |
| t <sub>PZL</sub> | Output Enable Time                                                   | 1.5                                                        | 6.5 | 1.5                   | 7.2             | 1.5                    | 8.5                  | ns    |
| t <sub>PZH</sub> |                                                                      | 1.5                                                        | 6.5 | 1.5                   | 7.2             | 1.5                    | 8.5                  | 115   |
| t <sub>PLZ</sub> | Output Disable Time                                                  | 1.5                                                        | 6.4 | 1.5                   | 6.9             | 1.5                    | 7.7                  | ns    |
| t <sub>PHZ</sub> |                                                                      | 1.5                                                        | 6.4 | 1.5                   | 6.9             | 1.5                    | 7.7                  | 115   |


# Dynamic Switching Characteristics


| Symbol           | Parameter                                   | Conditions                                                          | V <sub>CC</sub><br>(V) | T <sub>A</sub> = 25°C<br>Typical | Units |
|------------------|---------------------------------------------|---------------------------------------------------------------------|------------------------|----------------------------------|-------|
| V <sub>OLP</sub> | Quiet Output Dynamic Peak V <sub>OL</sub>   | $C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$   | 3.3                    | 0.8                              | V     |
|                  |                                             | $C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$   | 2.5                    | 0.6                              | v     |
| V <sub>OLV</sub> | Quiet Output Dynamic Valley V <sub>OL</sub> | $C_{L} = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$ | 3.3                    | -0.8                             | V     |
|                  |                                             | $C_L$ = 30 pF, $V_{IH}$ = 2.5V, $V_{IL}$ = 0V                       | 2.5                    | -0.6                             | v     |

# Capacitance

| Symbol           | Parameter                     | Conditions                                            | Typical | Units |
|------------------|-------------------------------|-------------------------------------------------------|---------|-------|
| CIN              | Input Capacitance             | $V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$          | 7       | pF    |
| C <sub>I/O</sub> | Input/Output Capacitance      | $V_{CC} = 3.3V$ , $V_I = 0V$ or $V_{CC}$              | 8       | pF    |
| C <sub>PD</sub>  | Power Dissipation Capacitance | $V_{CC} = 3.3V$ , $V_I = 0V$ or $V_{CC}$ , f = 10 MHz | 20      | pF    |





